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We report new experiments with the ‘sliced-cylinder’ β-plane model of Pedlosky &
Greenspan (1967) and Beardsley (1969), but with a much wider basin such that the
western boundary current and its eddies occupy a small fraction of the basin width.
These experiments provide new insights into nonlinear aspects of the flow: the critical
conditions for boundary current separation and the transition from stable to unstable
flow are redefined, and a further transition from periodic to chaotic eddy shedding
under strong anticyclonic forcing is also found. In the nonlinear regimes the western
boundary current separates from the western wall and shoots into the interior as a
narrow jet that undergoes a rapid adjustment to join with the broad slow interior
flow. In the unstable regimes this adjustment involves eddy shedding. Each transition
occurs at a fixed critical value of a Reynolds number Reγ based on the velocity
and width scales for a purely viscous boundary current: the flow is unstable for
Reγ > 123 ± 4 and aperiodic for Reγ > 231 ± 5. The results provide evidence that the
mechanism causing instability is shear in the separated jet rather than the breaking of
a large-amplitude Rossby wave. A quasi-geostrophic numerical model applied to the
laboratory conditions yields a stability boundary and detailed characteristics of the
flow largely consistent with those determined from the experiments. It also reveals a
strong dependence of the circulation pattern on basin aspect ratio, and shows that an
adverse higher-order pressure gradient is responsible for western boundary current
separation in this model. Eddy–eddy interactions and feedback of fluctuations from
the eddy formation region to upstream parts of the boundary current contribute to
aperiodic behaviour. As a result of eddy shedding, passive tracer from each streamline
in the boundary current can be stirred across much of the width of the basin.

1. Introduction
Simple models have played an important role in developing the understanding

of midlatitude wind-driven circulation, with its intense western boundary currents,
separation from the western boundary and instability in the energetic extension stream.
Many of these have been barotropic models of flow on a β-plane in rectangular basins
of constant depth forced by simple prescribed wind stress distributions, most often
with regions of both cyclonic and anticyclonic wind stress curl. They have been used
in investigations of nonlinear effects on the circulation at finite Rossby or Reynolds
numbers at midlatitude (eg. Bryan 1963; Böning 1986; Ierley 1990; Kamenkovitch et
al. 1995) and of the influence of the choice of boundary conditions (Böning 1986;
Haidvogel, McWilliams & Gent 1992; Dengg 1993). They have also been used to
study western boundary current separation in both viscous and conservative cases
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(Veronis 1973; Pedlosky 1987; Cessi 1991; Verron & Le Provost 1991; Haidvogel et
al. 1992; Dengg 1993), the stability of the boundary current (Ierley & Young 1991;
Kamenkovitch et al. 1995; Sheremet, Kamenkovitch & Pastushkov 1995) and the
presence of an inertial recirculating gyre in the northwest of the subtropical gyre
(Bryan 1963; Kamenkovitch et al. 1995).

Among the results of the numerical studies we note in particular that there is a
critical Reynolds number (for a given value of the Ekman number) above which
the steady solution gives way to an unstable flow in which eddies are generated
and an intense recirculating gyre in the northwest is also present (Bryan 1963). In
recent studies using a two-gyre model that takes into account nonlinearity and lateral
friction, but not bottom friction, Kamenkovitch et al. (1995) and Sheremet et al.
(1995) found a second critical value of a Reynolds number (which they based on a
slow interior velocity scale and the width of a purely inertial boundary layer). Above
this larger critical value the boundary layer solution ceased to exist and the numerical
solution became more chaotic in both the interior and boundary current. Meacham
& Berloff (1997) found corresponding transitions from steady to periodic and from
periodic to aperiodic for a single-gyre model.

A simple laboratory model of homogeneous ocean circulation at midlatitudes was
proposed by Pedlosky & Greenspan (1967). In their ‘sliced cylinder’ model, flow in a
rotating cylindrical basin was forced by a surface stress τ imposed by a differentially
rotating lid in contact with the water and rotating at a speed ∆Ω relative to the
basin. The forcing therefore represented a uniform wind stress curl. The effects of the
variation of Coriolis parameter f with latitude were modelled by imposing a variation
of water depth H using a planar sloping base, such that contours of potential vorticity
f/H were parallel straight lines across the basin. Thus all geostrophic contours were
blocked. Beardsley (1969) investigated this model in the laboratory, and the idea has
been followed up in further experimental, analytical and numerical studies (Beardsley
1973, 1975; Beardsley & Robbins 1975; Becker & Page 1990). The model reproduced
the primary aspects of the mid-latitude circulation, particularly the interior Sverdrup
balance closed by an intense western boundary current. For sufficiently small values of
the Rossby number ∆Ω/Ω the observed flow was consistent with the linear analytical
solution for the interior flow (Pedlosky & Greenspan 1967; Beardsley 1969), in which
a balance between vortex compression (for anticyclonic forcing) due to pumping
by the upper Ekman layer and stretching due to flow across the potential vorticity
(depth) contours is dominant in the interior and breaks down against the western
boundary to allow a return flow.

The experiments and numerical solutions for the sliced cylinder showed that for
larger Rossby numbers the western boundary current intensified in the downstream
direction. The outflow (in the case of anticyclonic forcing) became increasingly local-
ized to a narrow jet accompanied by an intense anticyclonic recirculating gyre and a
stationary Rossby wave-like pattern. The flow became unstable when the anticyclonic
forcing was sufficiently strong. Beardsley (1969, 1973) and Beardsley & Robbins
(1975) expressed the conditions for onset of instability in terms of a critical value of
a Reynolds number, the value being dependent on Ekman number. They concluded
that the instability was due to breaking of the large-amplitude standing Rossby wave
through which the outflow stream passed. The numerical studies of Becker & Page
(1990) supported an alternative instability mechanism (first suggested by Beardsley
1969) of breakdown due to strong shear in the separated jet.

The sliced-cylinder flows referred to above were clearly intensified in the west with
a strong boundary current. All of the experiments and computations used ‘deep’
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systems having width-to-height ratio, L/H , of order one. This allowed the total
variation of water depth across the basin to be kept much smaller than the depth,
accommodating comparison with linearized analyses at weak forcing. However, the
width of the boundary current was not small compared to the width of the basin
(it scales as HE1/4 if bottom friction is the dominant dissipation – Stommel 1948;
Beardsley 1969 – and as HE1/3 if sidewall friction is dominant – Munk 1950; Munk
& Carrier 1950; Beardsley 1969 – where the Ekman number E was of order 10−5

to 10−4). Indeed, the velocity reversal between the interior Sverdrup flow and the
return boundary current occurred at around one half of the cylinder radius, and the
eddy structures in unstable flows filled much of the basin. Thus the previous models
were not wide systems like the ocean basins, and perhaps not the most suitable for
investigation of nonlinear phenomena.

In this study we examine the circulation in a wider basin where the western
boundary current and its eddies fill a much smaller fraction of the basin. The role of
sidewall effects other than dissipation in the western boundary current is reduced and
the dependence of the flow on aspect ratio and Rossby (or Reynolds) number can be
further explored. We concentrate on the case of anticyclonic forcing, or negative wind
stress curl. By extending the range of conditions to strong forcing we redefine the
critical conditions for instability and discover in the laboratory experiments a second
transition: that from periodic to chaotic flow. This corresponds to the transition found
by Kamenkovitch et al. (1995) in their two-gyre numerical model with no bottom
friction. In order to provide further information on the flow for moderate Rossby
numbers we also employ a quasi-geostrophic numerical model originally developed
by Page (1982) and Becker & Page (1990). Our study of this homogeneous flow was
in part motivated by an investigation, in the same apparatus, of a two-layer density-
stratified flow (Griffiths & Cornillon 1994), and the present results serve to better
define the barotropic flow with which the baroclinic cases can be compared. The
experimental and numerical results reported here also serve as a basis of comparison
for an investigation of the effects of different side boundary conditions in which we
replace the vertical side boundary with a bottom slope that meets the lid around the
perimeter of the basin (Griffiths & Veronis 1997, 1998).

2. Apparatus and method
The experiments were carried out in a cylindrical tank of inner diameter L = 0.98 m

rotating about a vertical axis at an angular velocity Ω. In this tank the north-south
gradient of planetary vorticity in the oceans is simulated by a linear variation of
the water depth produced by planar sloping top and bottom boundaries (figure 1).
The base angle α2 from the horizontal was fixed at tan α2 = 0.10. The lid angle α1

(which is essential in two-layer experiments in order to provide a β-effect in the top
layer) was adjustable and of opposite sign to the base angle. It was set to either
zero or tan α1 = 0.05. In the homogeneous experiments being reported here it was
only the total gradient tan α = tan α1 + tan α2 of water depth that mattered, and
we have tan α = 0.10 and 0.15. The mean depth of water, and the depth at the
centre of the tank, H0, was 12.5 cm. Hence the aspect ratio L/H0 = 7.84, much larger
than the aspect ratios used by Beardsley (1969, 1973) (L/H0 = 1.99) and Becker &
Page (1990) (L/H0 = 0.855). In the following discussion we refer to directions in
analogous geographic terms appropriate to a northern-hemisphere ocean basin. Thus
the shallowest water in the basin is ‘north’ and the left-hand side of the basin when
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Figure 1. Diagram of the ‘sliced-cylinder’ apparatus with sloping base and lid, and differentially
rotating lid. The working chamber, surrounding water jacket and one dye injection tube are shown
as viewed from the ‘east’; the x-axis points out of the page.

looking north is ‘west’, for this is the direction of propagation of topographic Rossby
waves.

The surface stress τ applied to the water by the rotating lid is given by τ =
ρr∆Ω(νΩ)1/2, where r is the radial position and ν is the kinematic viscosity of the
water. In order to avoid unwanted forcing components it was important that the lid
rotate at a uniform speed, that the lower surface of the lid be planar and that it
rotated true without displacements normal to its plane. In a first set of experiments
the lid was a 1 cm thick Perspex sheet, chosen for its uniform thickness and flatness.
However, in order to eliminate the possibility of distortions due to absorption of water
in the Perspex, the lid in most experiments was a 1 cm thick float-glass plate. The
lids were cut to fit within the outer wall of the cylindrical tank with a 1 mm gap and
sealed against water transport by a flexible nylon-on-rubber strip fixed to the lid and
sliding against the wall. The lid was supported from above by eight equally spaced legs
attached close to the outer edge of the lid and connected to a rigid drive ring above
the tank. The drive ring was supported by four pairs of angular-contact bearings
rigidly attached to a frame which was, in turn, rigidly connected to the rotating
table. The whole support assembly was pivoted about an east-west axis through the
centre of the tank at the height of the lid so that the lid could be tilted to an angle
from the horizontal while keeping it centred on the cylinder and rotating about its
normal axis (figure 1). The lid was driven by a stepper motor via a small wheel
against the outer rim of the drive ring. In order to test for any imperfections giving
unwanted vertical displacements of the lids, each lid was tested with a micrometer
gauge mounted inside the tank to monitor the lower surface of the lid while it rotated.
Vertical displacements about the mean position were approximately ± 0.1 mm for the
Perspex lid and ± 0.05 mm for the glass lid. The drive ring and bearing assembly
was of a larger diameter than the tank, leaving the full area of the cylinder open to
viewing from above.

The cylinder was constructed inside a larger square tank and the intervening space
was filled with water to allow the flow to be observed horizontally through the
sidewalls without undue distortion. This outer chamber also served as a temperature-
controlled bath insulating the working chamber against heat exchange with the
room. Insulation above the lid also was found to be necessary, otherwise even minor
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cooling produced small convective vortices throughout the slow interior flow when
experiments having slow forcing were run for an hour or more. This problem was
solved by covering the lid with 5–10 cm of water pumped continuously from a
temperature bath in the non-rotating reference frame (and held to within ± 0.02 ◦C),
through rotating fluid couplings to the rotating table. The same water was passed
through the outer chamber surrounding the cylinder. This arrangement kept the
water in the working chamber at a constant temperature of 20.6 ± 0.1 ◦C despite
room air-conditioning and diurnal temperature cycles.

A range of tank rotation speeds Ω = 0.5–2.0 rad s−1 and relative lid speeds ∆Ω =
0.0051–0.16 rad s−1 (or lid periods of 1228 s to 40 s) gave Rossby numbers Ro = ∆Ω/Ω
in the range 0.0026 < Ro < 0.16 and Ekman numbers E = ν/ΩH2

0 in the range
3.15× 10−5 < E < 1.26× 10−4, where ν = 0.99× 10−6 m2 s−1 is the kinematic viscosity
of the water. These parameters give E1/4 ∼ tan α and conditions that are predicted to
place the western boundary current in a mixed regime between that of Stommel (1948)
(dominated by Ekman dissipation) and that of Munk (1950) (dominated by dissipation
on the sidewall) (Beardsley 1969; Beardsley & Robbins 1975). Much smaller gradients
of water depth would have given boundary currents in the Stommel regime, but the
westward intensification would have been much reduced. Larger slopes, on the other
hand, would have given variations of water depth as large as the depth, hence a large
distortion of the flow (outside regions where the Stommel and Sverdrup balances
hold) due to streamtube depth changes. The chosen slope, depth and basin width
therefore represent a compromise. We also note that the potential vorticity gradient
is not precisely constant as a consequence of the finite relative depth variation.

A particularly effective but simple method of flow visualization in these experiments
is to bleed narrow streams of neutrally buoyant dye into the flow from syringe tubes
of 1.5 mm diameter positioned at strategic points in the tank. In order to match the
density of the aqueous dye solutions, in most experiments a small quantity of salt was
added to the water in the basin. In other experiments a small amount of alcohol was
added to the dye solution to make it neutrally buoyant in fresh water. In both cases
the density was matched to better than 2× 10−3%. However, molecular diffusion led
to a gravitational instability of the dye streams after they had been carried some
distance from their sources. This instability, despite causing a small amount of lateral
spreading, proved useful in that it eventually distributed the dye as a vertical sheet.
The most effective positions for these continuous dye sources were found to be within
the boundary current. This is because the dye streams are better formed at the
larger velocities, at which it was easier to match the tube exit velocity to the ambient
velocity, and also because the streams later underwent streamwise convergence as they
entered the interior flow, becoming much more visible. Dye release in the interior
was successful, but those streams became invisible when stretched on entering the
boundary current. Hence most of the outlets were positioned near the west. The
dye lines were passively advected along streamlines in the boundary current, passed
through the interior of the basin, and eventually re-entered the boundary current.
Throughout this circuit the tracer revealed the mean flow, any unsteadiness in the
velocity field, eddy shedding, stirring in the interior, and any other small-scale motions.
Additional measurements were made of the local velocity profiles by using a solution
of bromothymol-blue pH indicator in the water and electrode wires stretched from
the centre of the tank to the west wall. The wire was partially insulated so that the
line of coloured indicator so formed was broken at 0.5 cm intervals.

The advection of dye or pH indicator was recorded using still and video cameras
located above the axis of the tank and a second video camera positioned directly
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above the northwestern wall. This second camera was framed on the northwest
quadrant of the basin and gave a closer view of the boundary current, the separation
and the eddy-shedding regions of the flow. Of particular use were time-lapse video
records.

Further information on the steadiness or instability of the flow was obtained from
self-heated semiconductor thermistor beads. Two of these were mounted at mid-depth
in the tank and connected in an electronic circuit which maintained a power supply
to the thermistor sufficient to maintain it at a constant temperature despite varying
heat fluxes due to varying flow speeds past the bead. The circuit provided an output
voltage signal related (in a nonlinear fashion) to the power supplied and hence to
the flow speed. In this way the variability of extremely slow flows could be detected.
This instrument relied on the water temperature remaining constant throughout the
duration of monitoring. Due to the temperature dependence and nonlinearity of the
output a calibration against absolute speed was not made and we utilize the voltage
output only as an indication of the variability of the flow speed.

3. The numerical model
3.1. Equations of motion

The non-dimensional momentum and continuity equations for a homogeneous in-
compressible fluid relative to a coordinate system rotating with angular velocity Ω
are

Ro

[
∂u

∂t
+ (u · ∇)u

]
+ 2k × u = −∇p+ E∇2u (1)

and

∇ · u = 0, (2)

where u is the velocity, p is the pressure and k is a unit vector parallel to Ω. The
length, time, velocity and pressure have been scaled by H0, |∆Ω|−1, |∆Ω|H0 and
|∆Ω|ΩρH2

0 , respectively, where H0 is the depth at the centre of the basin, ∆Ω is the
differential angular velocity of the lid and ρ is the fluid density. The importance of
advection and viscosity are parameterized by the Rossby number Ro = |∆Ω/Ω| and
Ekman number E = ν/ΩH2

0 , respectively, where ν is the kinematic viscosity of the
fluid. Gravitational and centrifugal accelerations are not relevant to this system, since
there is no free surface or stratification. If we define right-handed coordinates fixed
to the rotating frame with the origin at the centre of the sloping bottom, the z-axis
vertical and the y-axis to the north (see figure 1), no-slip boundary conditions have
the form

u = 0 on r =
L

2H0

and z = y tan α,

u = 1
2
ζT rθ̂ on z = 1,

 (3)

where ζT = 2∆Ω/|∆Ω| is the relative vorticity of the lid, r is the radial coordinate and

θ̂ is the azimuthal unit vector; we have assumed without loss of generality that the lid
slope tan α1 is zero. We shall separate the vertical and horizontal components of the
velocity by writing u = uH + kw, where k · uH = 0. It is found experimentally that uH
is independent of z outside the Ekman layers on the top and bottom boundaries for
the parameters used in this study. Assuming that ∂uH/∂z = 0, the vertical component
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of the curl of (1) yields the vorticity equation

Ro

[
∂ζ

∂t
+ ∇H · (uHζ)

]
− 2

∂w

∂z
= E∇2

Hζ, (4)

where ζ = k · (∇× u) is the vertical component of the relative vorticity and ∇H is the
two-dimensional gradient operator. The horizontal component of the vorticity (which
would appear in a vortex tilting term) is absent from this equation as a consequence
of the assumption that ∂uH/∂z = 0.

Incompressibility and the depth-independence of the horizontal velocity imply that
the vortex stretching term ∂w/∂z is independent of depth, so it can be determined
from the conditions for matching the interior vertical velocity to the upper and lower
Ekman layers (Pedlosky 1979):

w = 1
2
E1/2(ζT − ζ) at z = 1, (5)

w = 1
2
E1/2ζ + uH · ∇h at z = h, (6)

where h = y tan α is the scaled bottom topography, and the weak dependence of the
second term in (6) on bottom slope has been neglected (valid for tan α = |∇h| � 1).
The steady, linear Ekman matching conditions used here are valid for flows which
are nearly steady over one rotation period (Beardsley 1975) and have Ro � E1/4

(Bennetts & Hocking 1973). The latter criterion is violated for the more strongly
forced results presented here, but the close similarity of the calculated flows to those
seen in the laboratory suggests that the error involved in using linear Ekman pumping
is insignificant. Using (5) and (6) we find

∂w

∂z
=
E1/2( 1

2
ζT − ζ)− uH · ∇Hh

1− h . (7)

Without loss of generality the horizontal velocity can be expressed in terms of a
streamfunction ψ and scalar potential φ as

uH = k × ∇Hψ + ∇Hφ, (8)

where

∇2
Hψ = ζ. (9)

From (2) we have

∇2
Hφ = −∂w

∂z
, (10)

but this is not sufficient to define φ due to the presence of φ in the orographic
term uH · ∇Hh in (7). However, since the contribution of the divergent velocity to
this term is expected to be small, we can estimate φ by neglecting this contribution
and treating (10) as a Poisson equation for φ. Using this estimate, it was found from
numerical experiments that the divergent horizontal velocity ∇Hφ is negligible in most
of the basin, where the dominance of the topographic Sverdrup or Stommel balances
implies that the stretching term is almost zero. (These balances give a non-divergent
horizontal velocity, but a divergent horizontal transport (1 − h)uH , making a trans-
port streamfunction formulation inappropriate.) The divergent horizontal velocity is
largest in the inertial jet, the viscous sublayer of the western boundary current, and the
time-dependent region where eddies are shed (under strong forcing), but even in these
regions the horizontally divergent velocity was at most only a few percent of the hori-
zontally non-divergent velocity k×∇Hψ. With this in mind, the divergent velocity was
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neglected in the orographic and advection terms, simplifying the vorticity equation to

Ro

[
∂ζ

∂t
+ J(ψ, ζ)

]
= 2

[
E1/2( 1

2
ζT − ζ)− J(ψ, h)

1− h
]

+ E∇2
Hζ, (11)

where J is the two-dimensional Jacobian operator. Thus the problem has been reduced
to solving (11) and (9), and the no-slip boundary condition becomes

∇Hψ = 0 at r =
L

2H0

. (12)

This formulation is equivalent to the quasi-geostrophic approximation (Pedlosky
1979), except that the finite depth variation has been retained.

3.2. The numerical scheme

The numerical experiments were performed using a highly efficient sliced-cylinder
code developed by Page (1982) and described in detail in his PhD thesis (Page 1981).
The algorithm is essentially the same as that presented by Beardsley (1972), which
was in turn based on the refinement by Israeli (1970) of a scheme proposed by
Pearson (1965). Briefly, the code is a finite-difference scheme formulated in polar
coordinates. Second-order differences were used to represent the spatial derivatives,
with flux-conservative operators used for the Jacobian and Laplacian terms – for
example, the orographic term was evaluated as

−J(ψ, h)

1− h = ∇H · [ln (1− h)k × ∇Hψ]. (13)

The terms in the vorticity equation at the central grid point were evaluated using flux
integrals through the first circle of grid points around the origin.

The vorticity equation (11) was advanced in time using the alternating-direction
implicit method (second-order accurate in time), and a fast Fourier transform in θ
was used to solve the Poisson equation (9) for ψ. Since the advection term in (11)
couples it nonlinearly to (9) the two equations were solved iteratively within each
timestep until ψ and ζ converged. This in-timestep iteration also served to converge ζ
at the boundary to a value which was consistent with the no-slip boundary condition
(12). The numerical results reported here were obtained using 160 grid points in the
radial direction and 512 in the azimuthal direction and a timestep of 0.0125(4πE1/2)−1

rotation periods, giving very good spatial and temporal resolution. A uniform grid
was used in both directions in order to retain second-order accuracy in the spatial
derivatives.

4. Flow structure
4.1. Laboratory flow regimes

Photographs of the laboratory flow as revealed by the advection of dye streams under
a range of Rossby and Ekman numbers, with anticyclonic forcing, are shown in
figure 2. As in previous work with the sliced-cylinder model, the downward pumping
by the upper Ekman layer flow drove a broad, slow Sverdrup flow across the lines of
constant depth throughout the interior of the basin. The return flow was confined to a
fast, narrow boundary current against the western wall and flowing toward shallower
water (poleward).

For very small Rossby numbers the circulation possessed close to north-south
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(a) (b)

(c) (d )

Figure 2. Circulation as revealed by dye advection for four sets of conditions which give differ-
ent flow regimes: (a) as close to linear as practicable (Ω = 2.000 rad s−1, ∆Ω = 0.0225 rad s−1,
Ro = 0.0112, E = 3.15 × 10−5, Reγ = 46.8); (b) nonlinear but stable (Ω = 0.500 rad s−1,
∆Ω = 0.0278 rad s−1, Ro = 0.0557, E = 1.26 × 10−4, Reγ = 92.1); (c) unstable and periodic
(Ω = 1.001 rad s−1, ∆Ω = 0.0532 rad s−1, Ro = 0.053, E = 6.3× 10−5, Reγ = 139.7); (d) unstable and
aperiodic (Ω = 0.500 rad s−1, ∆Ω = 0.0845 rad s−1, Ro = 0.169, E = 1.26× 10−4, Reγ = 279). These
runs were with a northern-hemisphere orientation (Ω anticlockwise and shallowest water at the top
of the image) and had anticyclonic lid forcing. Contours of constant depth are straight lines from
left to right. Neutrally buoyant dye was injected near the left wall (at the west) as well as at the
centre of the cylinder. The number on each frame shows the time in tank rotation periods (to 0.1
periods) after the beginning of dye release, and the release began long after the flow had adjusted
to the applied forcing.

symmetry but was centred far to the west of the basin (figure 2a). Streamlines
diverged from the boundary current at all latitudes in a manner consistent with linear
analysis (Pedlosky & Greenspan 1967; Beardsley 1969). Under these conditions the
time required for tracer to be advected around a complete cycle of the basin was many
hours, a time so long that convective motions, though extremely small, eventually led
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to dispersion of the dye streams and poor visualization of the inflow from the interior
to the boundary current in the south. When the surface stress was cyclonic the flow
was approximately reversed (except that a small oscillation responsible for the kinks
in the dye stream in figure 2(a) and discussed below was not observed).

The only unexpected feature of the laboratory flow at small Rossby numbers
was that the flow was never completely steady under anticyclonic forcing. Even at
Ro ≈ 0.002 a small-amplitude oscillation persisted indefinitely. This oscillation could
be detected only where dye streams exited from the boundary current and where
the bromothymol-blue indicator lines crossed the edge of the current at the west. It
appeared as a small azimuthal fluctuation of the azimuthal velocity and of the dye
stream. As a result the dye stream shifted across a narrow band of streamlines and
the oscillation was recorded as a regular series of kinks ‘fossilised’ in the dye line as it
was carried through the interior of the basin. These oscillations could not have been
introduced by flow past the dye tubes at the west since the Reynolds number based
on the tube diameter was too small (between 0.4 and 8) and the same oscillations
were found in the thymol blue lines at the outer edge of the current beyond the
tubes. Furthermore, the fluctuations were in phase across the whole of the current
despite there being two to four dye tubes, each at locations of very different mean
velocity. We carried out exhaustive tests to determine whether this small oscillation
was produced by unwanted forcing from imperfections in the operation of the
rotating lid apparatus. Hence the lid was changed, the supporting mechanism was
modified and reconstructed, and a micrometer needle gauge was used to make in
situ measurements of fluctuations in the position of the bottom surface of the lid.
The changes produced no effects on the observed oscillations. The measurements
also indicated that the vertical displacements of the driving surface were less than
5% of the Ekman layer thickness and that the vertical velocities of the surface were
three orders of magnitude smaller than the vertical Ekman pumping velocity. From
this we expect any imperfections to have negligible and undetectable effects on the
flow. On the other hand, we note that even the smallest Rossby number achieved
does not satisfy the criterion for linear flow (Ro � E1/2; Becker & Page 1990) since
0.006 < E1/2 < 0.014 and so the theory does not predict steady flow. The oscillations
were modulated in such a way that there was an integer number in each revolution of
the lid (see § 5.5), indicating that the flow may have been extremely sensitive to weak
forcing at frequencies near the lid rotation frequency. Nevertheless, the measured
frequencies will provide evidence that whatever process led to the oscillations in the
stable regime, it is unrelated to the shear flow instability mechanism at work under
stronger forcing as reported below.

With stronger forcing the flow became increasingly asymmetric in the north-south
direction and the western boundary current intensified to the north (figure 2b) in the
manner observed in previous studies. The outflow from the boundary current became
less divergent, until it became a narrow jet. As an illustration of this, the photograph
in figure 2(b) shows two streamlines initially 2 cm apart at the west (with the outer
dye tube 1 cm from the wall). The lines did not diverge significantly until the jet
had penetrated some distance southeastward into the interior. At this point the jet
underwent a rapid divergence, a part of it looping northward and supplying the return
flux to the eastern portion of the basin and a part of it turning westward to supply
the western portion of the interior. This westward portion of the flow enveloped a
region of closed anticyclonic recirculation (made visible in other runs by placing dye
tubes slightly farther than 3 cm from the wall at the west). A second region of closed
recirculation persisted farther south near the west. Also visible was a narrow eastern



‘Sliced-cylinder’ model of beta-plane circulation 215

boundary layer approximately 0.5–1 cm wide along the full length of the eastern wall
which carried a relatively small flux of water northward and upward along the wall
to the lid. A similar upward flow (again of order 0.5–1 cm thick) was seen on the
western wall inside the boundary current, again feeding water into the radial Ekman
flux at the lid. This boundary layer upflow placed a lower limit on the distance from
the wall at which tracer, released at the west, marked streamlines that entered the
interior before entering the upper Ekman layer. A bottom Ekman layer which carried
a weak flux to the east was observed in the interior on occasions when some of the
dye fell to the bottom after double-diffusive finger instability.

For still larger forcing the amplitude of the flow oscillations became so large
that they led to eddy shedding in the region where the separated boundary current
jet entered the interior flow (figure 2c). This instability was associated with rapid
adjustment of the flow from the narrow free jet to the broad, slow interior flow
that filled the rest of the basin. At marginally supercritical conditions the oscillations
and attendant eddy shedding were precisely periodic. The most obvious eddies were
cyclones which, after generation from the ‘flapping’ jet, moved westward around the
edge of the anticyclonic recirculating gyre. The relative vorticity of each cyclonic eddy
was largely dissipated by the time the eddy had approached the outer edge of the
western boundary current, from where the tracer carried by the eddy was passively
advected southward with the interior flow. Only a small outer part of each eddy was
entrained into the anticyclonic gyre. At Rossby numbers larger than that required for
generation of cyclones, anticyclonic eddies formed in the northeast of the basin, where
the eastward portion of the diverging boundary current jet turned southward again
to enter the slow interior drift. These too were spun-up before they were advected far.
One result of the instability was a very extensive stirring of tracer from any streamline
in the jet across much of the width of the basin. The distribution of passive tracer
in the interior in experiments such as that in figure 2(c) is a ‘fossilised’ record of
this stirring. Superimposed on the mean flow and on the fossil tracer pattern in all
unstable runs were westward-travelling wave-like oscillations throughout the basin.
These had amplitudes which increased with Ro and are assumed to be Rossby waves
excited by the jet oscillation and eddy shedding.

In some experiments in which the flow was periodic, we identified a second fre-
quency within the flow, corresponding to an alternation between larger and smaller
eddies. There is some evidence that the second frequency tended to occur only for
forcing strengths well beyond that required for instability.

When still greater forcing was applied, as in figure 2(d), the periodic flow gave way
to a regime in which the flow never precisely repeated. Intervals between consecutive
eddies were measured over sequences of 20 to 40 eddies from the video records and
found to vary significantly. There were also no regular patterns in the distribution
of passive tracer produced in the interior by the eddy-shedding process. The output
from the thermistor speed probes, which provided much longer and continuous
records more suited to analysis of the temporal behaviour at fixed points in the
flow, confirmed the aperiodic nature of the flow and will be discussed in § 5. In this
aperiodic regime the flow was more energetic, the intense anticyclonic gyre in the
northwest was larger and Rossby waves in the interior had larger amplitudes. The
cyclonic eddies now took a range of sizes. Some were swept around in the anticyclonic
gyre, some were advected southward as at lower Rossby numbers, and others were
torn apart by the mean flow where it divided between the recirculating gyre and the
southward interior flow. Strong anticyclonic eddies were the dominant feature to the
northeast of the separated boundary current.
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Figure 3. Streamlines from the numerical model with tan α = 0.1 and L/H0 = 7.84: (a) linear flow:
Ro = 0, E = 6.27× 10−5; (b) quasi-linear regime: Ro = 0.01, E = 3.14× 10−5; (c) nonlinear regime:
Ro = 0.06, E = 1.25 × 10−4; (d) periodic eddy-shedding regime: Ro = 0.0393, E = 3.14 × 10−5.
The streamfunction is defined as in § 4.4 (scaled by RoΩL2, with ψ = 0 on the point of maximum
western boundary current transport through y = 0) to allow comparison with figure 9, but note
that the bottom slopes are different.

4.2. Quasi-geostrophic model results

Around 130 numerical experiments were conducted in order to explore the flow
behaviour for a variety of different basin widths and Rossby and Ekman numbers. As
in the laboratory experiments, the flow behaviour passed through a number of regimes
for increasing values of Ro. For very weak forcing, the circulation pattern had a near
north-south symmetry and the flow was steady (streamfunction contours are shown
in figure 3a). The western boundary current intensified to the north under stronger
forcing (figure 3b), and a further increase in forcing resulted in separation of the
boundary current, which penetrated into the interior as a jet (figure 3c). Even stronger
forcing yielded a transition to periodic unstable flow, with cyclonic eddy shedding



‘Sliced-cylinder’ model of beta-plane circulation 217

(a) (b)

(c) (d)

(e) ( f )

Figure 4. Streamlines from the numerical model for various L, with fixed H0 = 12.5 cm, tan α = 0.1,
E = 3.14× 10−5 and Ro(L/H0) = 0.218 (so Reγ = Ro E−2/3(L/H0)(tan α)1/3 = 102). (a) L/H0 = 7.84
(as in the laboratory experiments reported here); (b) L/H0 = 3.92; (c) L/H0 = 2.77; (d) L/H0 = 1.96
(similar to Beardsley 1969, 1973 and Beardsley & Robbins 1975); (e) L/H0 = 1.39; (f) L/H0 = 0.980)
(similar to Becker & Page 1990). The streamfunction is scaled by RoΩL2, with ψ = 0 on the boundary
and the same contour interval for all plots.

from the cyclonic loop in the boundary current jet (figure 3d); shedding of anticyclonic
eddies at larger Ro was less prevalent than in the laboratory results. Further transitions
to alternating eddy sizes (period doubling) and to aperiodic eddy shedding took place
when the forcing was very strong. However, under these conditions the advective
term in the vorticity equation was not accurately represented by second-order finite
differences in the strongly decelerating flow in the separated jet, due to the numerical
instability discussed by Leonard (1984). This numerical limitation and the questionable
validity of the quasi-geostrophic formulation with linear Ekman layers for strongly
nonlinear flows prevented us from using the numerical model to accurately investigate
the aperiodic regime. Another limitation of the quasi-geostrophic formulation was its
inability to include the upward Ekman return flux seen close to the sidewalls in the
laboratory, so the eastern boundary layer was absent from the numerical results.

The effects of changing the basin width were also studied using the numerical
model. Figure 4 shows streamfunction plots of the solution for the same values of
Ro(L/H0), E and tan α in basins of the same depth (and thus the same values of
Reγ = RoE−2/3(L/H0)(tan α)1/3 and β = 2Ω tan α/H0) but different width. (Note that
the contrasts would be further accentuated if we had chosen to compare solutions
for a fixed Ro.) It can be seen that in the wide basin used in our experiments the
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boundary current separation and eddy shedding are much less influenced by the
eastern boundary than is the case for aspect ratios of order one. In narrow basins
the flow is dramatically stabilized, to the extent that the western boundary current
continues past the most poleward point and separates in the east, as was reported by
Becker & Page (1990) for the case of cyclonic forcing. Hence wide basins are of most
interest for studies of nonlinear phenomena.

Further results from the numerical model for the interior and boundary current
velocities and for the boundary current width are discussed below alongside the
corresponding laboratory measurements. A comparison with quantitative information
on the streamlines for the laboratory flow (§ 4.4) is given after we have presented the
velocity measurements, and results for the location of boundary current separation
(§ 6) are delayed until after the conditions for instability are determined (§ 5).

4.3. Flow velocities

The results of our measurements and computations of flow velocities are reported only
briefly, since they are not dissimilar to those of Beardsley (1969, 1973) and Beardsley &
Robbins (1975). Examples of velocity profiles across the laboratory boundary currents
and those given by the numerical model, normalized by the velocity aΩRo and radius
a = L/2, are plotted in figures 5(a) and 5(b), respectively. The agreement is excellent.
The only difference is a slightly smaller maximum current speed in the experiment
shown, and several experiments show that this is not a consistent difference but
associated with scatter in the data. No significant depth dependence was detected in
the experiments. Some of the small differences between the four measured profiles
shown are a result of small-amplitude oscillations in the flow, particularly at the edge
of the boundary current. The interior southward drift was found to be independent
of x to the precision of the measurements (10%) and constant to within 20%. The
profiles provide values of the maximum northward current speed νmax and the current
widths δm and δ0 defined by the positions of the maximum speed and velocity reversal,
respectively.

The normalized maximum northward velocities along y = 0 are plotted in fig-
ure 6(a) for a number of experiments in the low-Rossby-number regime, along with
the results of the numerical model. In order to remain within the quasi-linear regime
(defined as the conditions under which there was little downstream intensification of
the boundary current) in the experiments it was not possible to cover a range of
E at a fixed value of Ro. Hence the experiments covered a range of both Rossby
and Ekman numbers and in this regime it was difficult to determine independently
the role of each parameter. The quasi-geostrophic model, on the other hand, reveals
a dependence on both Ro and E, and the laboratory data are fully consistent with
these. Figure 6(b) shows a transition at finite Rossby number from vmax independent
of Rossby number at Ro� E1/2 to vmax ∼ Ro−0.6 at Ro > 0.05 (for E = 6.27× 10−5).
We also find, for example, vmax/aΩRo ∼ E0.13 for Ro = 0.02 (figure 6a).

The distance δm from the wall to the position of maximum velocity lay in the range
1.5 to 2.0 cm (or 0.013 < δm/L < 0.02) in all of the experimental runs in the quasi-
linear regime. However, this position could not be measured with sufficient precision
to reliably show its dependence on the external parameters. Measurements of the
full width δ0 of the current lay in the range 0.04 < δ0/L < 0.10 and showed that
it increased with both Rossby and Ekman numbers, consistent with the predictions
of the quasi-geostrophic model. The latter gives δm/L = 0.255E0.325 for Ro = 0.01
(δm ∼ E1/3 is expected from linear theory). For the full width it gives, for example,
δ0/L = 1.53E0.328 (on y = 0) for Ro = 0.02, and for E = 6.27 × 10−5 the width on
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Figure 5. Examples of profiles of the northward velocity component along a radial line from
the west wall to the centre of the cylinder, obtained (a) from the bromothymol-blue technique
with electrode wires 2 cm below the lid and 2 cm above the base (Ω = 1.00 rad s−1, Ro = 0.010,
E = 6.3× 10−5, anticyclonic forcing) and (b) from the quasi-geostrophic model for three values of
Ro and E = 6.27× 10−5.

y = 0 increases from 0.049 at Ro < E1/2 to ∼ 0.1 at Ro ∼ 0.1, largely as a result of
the centre of the gyre moving more northwards for large Ro.

The north-south component vint of the interior velocity (figure 7) was measured
using both the bromothymol-blue technique and the advection of the dye streams (as
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Figure 6. (a) The normalized maximum northward velocity measured in the western boundary
current at the west for experiments having tan α = 0.10 and a range of Rossby number (•,
Ro = 0.0026; ◦, Ro = 0.0051; 4, Ro = 0.0102; �, Ro = 0.0209; �, Ro = 0.0426) in the quasi-linear
regime, plotted against Ekman number. This lines are from the quasi-geostrophic model: ———,
Ro = 0.01; − · − · −, Ro = 0.02; . . . . . ., Ro = 0.03; - - - - -, Ro = 0.04; —– —–, Ro = 0.06. (b) The
numerical model prediction of maximum northward current velocity on y = 0 as a function of Ro
for E = 6.27× 10−5.

seen in figure 2) over a range of Rossby and Ekman numbers and for two values of
the slope tan α. No dependence of vint/Ro on Ro could be detected and the velocity
varied in a manner consistent with vint ∼ E1/2/ tan α, as predicted for a Sverdrup
balance (Beardsley 1969). Our data give

vint/aΩRo = −0.24(± 0.02)E1/2/ tan α. (14)

For two runs the velocity profile at the west was integrated to find the northward
volume flux in the boundary current. The result matched the southward flux in the
interior across the vertical plane y = 0 (δ0 − L/2 < x < L/2) to within 10%. For
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Figure 7. Normalized northward velocity component in the interior of the basin (at y = 0) for two
depth gradients and a range of Rossby numbers, plotted against the Ekman number. The velocity
showed no significant variation for −0.5 < x/a < 0.5 across the east-west diameter of the basin,
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Figure 8. Northward volume fluxes across y = 0 in the interior of the laboratory model, along with
a measure of the boundary current flux (not to be compared in absolute value). The normalized
western boundary current transport given by the numerical model for Ro = 0.04 and tan α = 0.1 is
also shown. The lines have exponent 0.41 ± 0.05.

a larger number of runs we simply calculated the flux ΨB = vmaxδ0H0 (with no
adjustment for the shape of the velocity profile) and, in figure 8, compare this with
the total southward transport Ψint in the interior calculated from Ψint = −vintH0L
(1 − δ0/L). A small northward flux in the viscous eastern boundary current was ne-
glected. The interior transport, normalized by RoΩL2H0, for tan α = 0.10 is described
by the regression

Ψint/RoΩL
2H0 = 0.030E0.36/ tan α, (15)
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and the same power law is obtained as the best fit to the boundary current flux.
The data for tan α = 0.15 are better described by the power law Ψint/RoΩL

2H0 ∼
0.079E0.46/ tan α but are not inconsistent with (15), where the constant is again 0.030.

On figure 8 we also plot the western boundary current transport derived from
the quasi-geostrophic model for Ro = 0.04. We find only a small dependence of
the normalized transport on Ro, and a transport increasing as E0.454± 0.004 for Ro in
the range 0.01 to 0.06. The quasi-geostrophic model is therefore consistent with the
measurements, the absolute values lying within 10% of each other across the range
of E. Note that whereas the interior velocities are in accord with linear theory, the
finite width of the boundary current contributes to a reduction in total interior (and
hence boundary current) transport.

4.4. Experimental streamfunction

From the velocity measurements it was possible to determine streamfunction contours
for the laboratory flows. First, from the video records we constructed the pattern of
streamlines throughout those regions of the circulation which were steady apart from
small-amplitude Rossby wave oscillations. This required tracking of passive tracer
in the interior flow over times very much longer than the wave period. It was not
attempted for the aperiodic regime, in which oscillations were of larger amplitude and
where dye did not form regular patterns in the interior. By combining the streamline
information with the estimates for total transport we determined those streamlines
which represented equal intervals in the velocity streamfunction ψ =

∫ x
x0
v dx, where x0

is the location of the outer edge of the boundary current (note that this is a different
definition for ψ from that in § 3.1). This task was simplified by the observation that
the southward velocity component v across y = 0 in the interior was to a good
approximation independent of the east-west position x (outside the narrow boundary
layer on the eastern wall).

Examples of the resulting streamfunction contours for experiments in each of the
flow regimes (other than the aperiodic regime) are shown in figure 9, where ψ is
scaled by RoΩL2. The streamlines sketched within the unsteady eddy-shedding region
for the unstable case are not well-defined and are intended to only approximately
indicate the mean flow. The major features of the circulation have already been
noted in reference to figure 2, and the results can be compared with the computed
streamfunctions in figure 3, noting that the difference in total transport is due to a
different bottom slope. One feature that is clear in the experiments but cannot appear
in the quasi-geostrophic model is the tendency for streamlines to approach the eastern
boundary. This is another indication of a small but significant transport from the
interior into the viscous eastern boundary current and thence to the upper Ekman
layer. Otherwise, the quasi-geostrophic model and the measurements give very similar
results, even at relatively large Ro.

5. Stability boundaries
5.1. Critical external parameters

The onset of instability and the transition between periodic and aperiodic flow were
located in parameter space using the flow visualization. Each run was classified as
quasi-linear, nonlinear but stable (having the boundary current outflow localized to
a jet in the northwest, but no eddy-shedding), unstable and periodic, or unstable and
aperiodic (figure 10). We have defined instability here as the formation and shedding
of cyclonic eddies, since these always formed under forcing weaker than that required
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Figure 9. Examples of streamlines obtained from laboratory experiments in three flow regimes. The
(mean) streamlines throughout the basin are averaged over only small-amplitude wave motions and
their positions in the interior are accurate to within ± 0.6 cm (± 0.006L), whereas those in the highly
unsteady eddy-shedding region could not be determined rigorously and are only an approximate
indication of the mean flow there. The streamlines shown are at round values of the normalized
streamfunction and were obtained by interpolation of a much larger set determined from the
video record of dye advection. tan α = 0.15, L/H0 = 7.84. (a) Quasi-linear regime, Ro = 0.011,
E = 3.15 × 10−5, Reγ = 46.8; (b) nonlinear stable Ro = 0.067, E = 1.26 × 10−4, Reγ = 110;
(c) unstable periodic Ro = 0.039, E = 3.15×10−5, Reγ = 162 (defined in § 5.2). Note that the Rossby
and Ekman numbers used are close to those in figures 3(b), 3(c) and 3(d), but the bottom slope is
different.
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Figure 10. Laboratory flow regimes identified with anticyclonic forcing. Transitions from stable
(•) to unstable flow with periodic eddy shedding (◦) and thence to aperiodic eddy shedding (N)
occur at conditions given by (16) and (17), respectively. The dashed line separates all experimental
runs classed as ‘quasi-linear’ from those classed as ‘nonlinear’. Behaviour is shown as a function of:
(a) external Rossby and Ekman numbers; (b) internal Reynolds number and the Ekman number.

to produce anticyclonic eddies. The onset of closed anticyclonic eddies in the northeast
was not so readily apparent.

The onset of instability and the transition to aperiodic flow are both well described
by simple power-law relations between Ro and E (figure 10a). Onset of eddy-shedding
occurred at

Ro1 = (33 ± 4)E0.68± 0.03 (16)

and chaotic behaviour was found above the curve

Ro2 = (93 ± 3)E0.71± 0.03. (17)

The transition from quasi-linear to nonlinear flow was less well-defined. At the
largest Ekman number (smallest Ω), even the smallest Rossby number achieved gave
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significant nonlinearity in the flow. However, the data are sufficient to conclude that
the effects of nonlinearity were large at Rossby numbers above the broken line on
figure 10(a):

Ro0 = 3.6E0.5± 0.1. (18)

These laboratory results will be discussed further before making a comparison with
the numerical model.

5.2. Instability mechanism

The onset of instability in either a sliced cylinder (Beardsley 1969; Beardsley &
Robbins 1975) or a barotropic rectangular basin (Bryan 1963; Kamenkovitch et al.
1995) has previously been located in terms of a Reynolds number for the flow, and
the instability in these models has been attributed both to shear instability (Beardsley
1969; Becker & Page 1990) and to the breaking of a large-amplitude standing Rossby
wave (Beardsley & Robbins 1975). However, the critical value of the Reynolds number
used previously for sliced-cylinder experiments was a function of the Ekman number.
The values were also much larger than the critical values of the same parameter
evaluated in the present experiments. We therefore explore the flow regimes in terms
of several different Reynolds numbers.

An external Reynolds number ReL can be defined based on the imposed scale
U = ∆ΩL/2 for the maximum velocity and the full width L of the basin, in which
case

ReL = UL/ν = 1
2
RoE−1(L/H0)

2. (19)

For this parameter the relations (16)–(18) indicate that each of the transitions occurs
at smaller values of ReL for larger Ekman numbers (e.g. ReL1 ∼ E−0.32). Hence there
seems little value in using such a Reynolds number.

Alternatively, we can consider the Reynolds number based on scales for the max-
imum velocity (U) and the width (δi ∼ (vS/β)1/2) of an inertial western boundary
current, where β = f tan α/H0 and vS = τ/βLH0 = (ν/Ω)1/2∆Ω/ tan α is the Sverdrup
velocity. This parameter becomes

ReWBC = Uδi/ν = 1
4
Ro3/2E−3/4(L/H0 tan α). (20)

Equivalently, we can derive from this the simpler combination RoE−1/2(L/H0 tan α)2/3

which might be utilized as a Reynolds number. The same combination of Ro and
E (but with different functional dependence on aspect ratio and bottom slope) is
obtained if a Reynolds number is formed using either the interior Sverdrup velocity
vS with the basin width L, giving

ReSv = vSL/ν = RoE−1/2(L/H0 tan α), (21)

or the vertical Ekman pumping velocity, wE = (ν/Ω)1/2∆Ω, with the water depth H0,
giving

ReE = wEH0/ν = RoE−1/2. (22)

The latter parameter, ReE , is the Reynolds number employed in Beardsley’s sliced-
cylinder studies to describe the observed onset of the eddy-shedding instability. In
those experiments instability occurred at ReE1 ≈ (11.3 ± 0.2) + (1.26 ± 0.05)× 105E.
Expressing the new results in figure 10(a) and (16) in a similar linear relation (for more
ready comparison) we find the smaller values ReE1 ≈ 4.67+1.67×104E. (Alternatively,
we prefer to use power laws to relate flows which we expect to be dynamically similar
and we find, from (22) and (16)–(18): ReE0 ≈ 3.6, ReE1 ∼ E0.18 and ReE2 ∼ E0.20,
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where number subscripts again identify the transitions (16)–(18). Thus we have two
problems: a critical value of the Reynolds number that is dependent on conditions in
a given apparatus, and a disparity in the critical value between two laboratory tanks.
The smaller values of ReE1 in our experiments are consistent with a dependence of
the critical value of ReE1 on aspect ratio. This aspect-ratio dependence would be
removed if the alternative parameter ReSv were used. However, use of ReSv introduces
a dependence of each transition on (tan α)−1 and does not remove the Ekman-number
dependence. Thus there appears to be no benefit in using the above internal Reynolds
numbers in place of the external Reynolds number (19) or the Rossby number.

An alternative Reynolds number, utilized by Kamenkovitch et al. (1995). Sheremet
et al. (1995) and Meacham & Berloff (1997) in their recent numerical studies of
the dependence of wind-driven flow on forcing strength, carries similar problems.
Kamenkovitch’s Reynolds number is based on the interior Sverdrup velocity vS and
the inertial boundary current width δi and can be written as

ReS = vSδi/ν = 2−1/2Ro3/2E−1/4(tan α)−2. (23)

This Reynolds number is equivalent to the ratio of inertial and viscous boundary
layer width scales (δi/γ)

3, where γ = (ν/β)1/3 is the width scale for a purely viscous
boundary layer in the linear regime. Kamenkovitch et al. (1995) carried out runs with
a single Ekman number and obtained one critical ReS for onset of instability and
another (higher) value for transition to aperiodic flow. Other values of E were not
explored. We note that a fixed critical value of this parameter would give transitions
at Ro ∼ E1/6, whereas both our data and that of Beardsley (1969) for the sliced
cylinder show that the onset of instability and the transition to aperiodic flow occur
at values of ReS ∼ E3/4 (where we have used relations (16) and (17)). This Reynolds
number also does not include a dependence of the onset of instability on the basin
aspect ratio, in contrast with the empirical evidence. More fundamentally, a Reynolds
number based on the interior Sverdrup velocity and a boundary current width does
not have a clear physical interpretation in terms of the relative roles of inertial and
viscous forces in the boundary current jet.

A Reynolds number that may tell us more about the dynamics of the flow is that
based on the boundary current velocity scale vmax and the width γ of a viscous bound-
ary layer. The viscous layer width defined above from linear theory can be expressed
as γ = (ν/β)1/3 = H0[E/(2 tan α)]1/3 (Beardsley 1969) and both our experiments and
numerical model (§ 4.3) show very similar dependence of boundary current widths on
Ekman number. Linear theory predicts that the interior Sverdrup velocity vint ∼ E1/2,
so that in a very wide basin the total transport ψint ∼ E1/2 and the boundary cur-
rent velocity varies as E1/2/γ ∼ E1/6. On this basis Ierley & Young (1991) used the
Reynolds number ψ/ν. On the other hand, our measurements and numerical model
results (for all nonlinear flows) show that the dependence of vmax on E is a function
of Rossby number and that the dependence under conditions anywhere near the
observed flow transitions is much weaker (figure 6a) than that given by the linear
theory. For example, vmax ∼ E0.13 at Ro = 0.02. Thus we modify Ierley & Young’s
Reynolds number by using the velocity scale U independent of viscosity, and write
the Reynolds number (after omitting for simplicity a multiplier of 2−2/3):

Reγ = Uγ/ν = RoE−2/3(L/H0)(tan α)1/3. (24)

From (16), (17), to within the experimental uncertainties, the observed transitions in
our experiments occurred at Ro ∼ E2/3. They therefore occurred at a fixed value of
Reγ , a result which is clear when the data are replotted in terms of this parameter
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(figure 10b). At onset of instability we find Reγ1 = 123 ± 4 and at transition to
chaotic flow Reγ2 = 231±5. In addition, the flow became very nonlinear for Reynolds
numbers Reγ > 70± 10.

To explore further the role of Reγ we note that the Rossby number at onset
of instability (for a given E) is 2.9 times smaller in our apparatus than in the
smaller cylinder of Beardsley (1969), a difference almost equivalent to an inverse
proportionality to the aspect ratio L/H0 (L/H0 = 7.84 in our case and 1.99 in the
earlier work). Earlier experiments by Pedlosky & Greenspan (1967) used an even
smaller aspect ratio (L/H0 = 1.42) and onset of instability in that case occurred at
still larger values of Ro. When the larger depth gradient in many of Beardsley’s runs
(tan α = 0.176) is taken into account, the weak dependence of Reγ on tan α brings the
critical values of Reγ further into line with that from the present experiments. From
the linear relationship for the critical value of ReE(E) at onset of instability given
by Beardsley we have evaluated Reγ1 = 96 ± 3 for his experiments at E < 3 × 10−5,
increasing to 107 ± 3 at E = 6 × 10−5. Thus there was only a 10% variation of the
critical value of Reγ across the range of conditions used, and the values are 25%
smaller than in the present experiments. Beardsley’s values are also slightly smaller
than the value Reγ1 = 111 ± 10 found from the numerical model with L/H0 = 1.96,
E = 3.14 × 10−5, and tan α = 0.1. We will show below, using the numerical model,
that these differences are small given a very strong dependence of the flow on the
aspect ratio when L/H0 < 2.

5.3. Regime transitions in the quasi-geostrophic model

In figure 11 we show the flow regime transitions given by the quasi-geostrophic
model, with the regime boundaries seen in the laboratory marked by grey lines for
comparison. For the laboratory aspect ratio the regime boundaries (figure 11a) were
in good agreement with the laboratory results for the transitions from quasi-linear
to nonlinear stable flow and thence to periodic eddy shedding. The transition to
nonlinear flow is shown by two dashed lines, corresponding to the two different
criteria used to define separation: the radial vorticity gradient changed sign at the
wall above the lower line, and recirculation at the wall (diagnosed by a change of
sign of the vorticity at the wall) occurred above the upper line. Thus the region
between the dotted lines corresponds to separation without recirculation. The transi-
tion to nonlinear flow found in the laboratory lies within this transition region. The
transition to periodic eddy shedding occurred for Reγ in the range 106–126, with
a weak dependence on E. This transition occurs at slightly lower Reγ than in the
laboratory, probably because sustained periodic oscillation of the total kinetic energy
was used instead of eddy shedding as the criterion for identifying flows in the unstable
regime.

Under very strong forcing the total kinetic energy of the flow in the quasi-
geostrophic model showed period-doubling behaviour, suggesting that this system
becomes aperiodic through a period-doubling cascade. Another feature characteris-
tic of the period-doubling route to chaos is the periodic ‘window’ in an otherwise
aperiodic regime, at E = 6.27× 10−5 and Reγ = 203. The details of the transition to
chaos are currently under further investigation. In the aperiodic regime the Fourier
spectrum of the total kinetic energy shows a broad spectrum with no well-defined
peaks, which is characteristic of chaos. The transition to chaos appears to be quite
different from that seen in the laboratory, with the onset of aperiodicity dependent
on E taking place at significantly smaller Reγ than in the laboratory when E is small.
This difference may reflect either the limitations of the quasi-geostrophic formulation



228 R. W. Griffiths and A. E. Kiss

1000

100

10

(a)

Aperiodic Periodic

Period 2

Period 8

Period 4 Periodic

Nonlinear
stable

Quasi-linear

2 4 6 8 10 20(× 10–5)

E

Rec

1000

100

10
100 101

Aperiodic

Period 4Simple periodicNonlinear
stable

Quasi-linear

(b)

L/H0

Rec

Figure 11. Flow regimes identified in the quasi-geostrophic numerical model. Transitions from
stable (•) to unstable flow with periodic eddy shedding (◦) and thence to aperiodic (N) eddy
shedding can be seen. (a) Regimes in Reynolds number–Ekman number space corresponding to
the experimental results on figure 10 (the grey lines show for comparison the transitions found in
the laboratory); (b) regime transitions in Reynolds number as a function of aspect ratio L/H0 for
basins of a fixed depth H0, a fixed Ekman number E = 3.14× 10−5 and bottom slope tan α = 0.1.

or numerical instability in the code (the numerical instability discussed by Leonard
1984 is largest when E is small and the forcing is strong).

The role of aspect ratio becomes clear when we plot the numerical model regimes
in Reynolds number against L/H0 (figure 11b) for fixed E, H0 and tan α (and thus
the same value of β = 2Ω tan α/H0). The critical Reynolds number passes through a
minimum at L/H0 ≈ 2.5. For wider basins it increases slowly. For narrow basins the
flow is strongly stabilized by effects of the sidewalls, to the extent that we find no
instability for L/H0 6 1.39 (at the chosen values of E and tan α) even with very strong
forcing. Streamfunctions for corresponding cases having a range of basin widths are
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Figure 12. Records of voltage versus time from the thermistor speed probes for two runs in
(a) the periodic regime (Ro = 0.038, E = 3.15× 10−5, tan α = 0.15, Reγ = 160) and (b) the aperiodic
flow regime (Ro = 0.077, E = 3.15 × 10−5, tan α = 0.15, Reγ = 320). Probes were positioned in the
boundary current 3 cm from the west wall (upper trace, smaller signal variability) and in the region
of eddy formation (r = 30 cm, θ = 27◦ west of ‘north’) (lower trace, larger signal variability). Only
a short section of the record is reproduced here, including the initial transient after the lid forcing
commences. The inertial period is 1.707 s.

shown in figure 4. A larger bottom slope, as in Beardsley (1973), is required to produce
instability when L/H0 is small.

5.4. Regime transitions from fixed-point thermistor records

As a complement to the classification of flow regimes based on flow visualization,
a number of runs in the unstable regime were independently classified as periodic
or aperiodic using characteristics of the time records from the thermistor devices.
In all cases these classifications were found to be identical to those based on the
flow visualization. Examples of thermistor records from two runs are shown in
figure 12. As in all runs, the water was first brought to solid-body rotation before
the lid forcing was begun. The record during the initial spin-up from rest after the
forcing was turned on is an additional aspect of interest since it reveals at least
two time scales of spin-up. There was a rapid development of the western boundary
current within a few inertial periods (which corresponds to a few travel times TR for
topographic Rossby waves crossing the basin with a westward group speed c, where
TR = L/c ∼ π2H0/(2ΩL tan α ≈ 4.1 s). This was followed by a much slower spin-up
of the mean flow in the boundary current over a time of order 60 inertial periods,
and involving the initiation of eddy shedding. There appeared to be an even longer
period (of order 200 inertial periods from the onset of forcing) before the unstable
flow had adjusted towards its final state, either periodic or aperiodic. These transients
are the subject of further investigation.
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5.5. Oscillation frequencies

We used time-lapse video footage to measure the period of oscillations in the labo-
ratory experiments within both the stable and periodic unstable regimes (figure 13).
The periods ranged from 50 table rotation periods (100 inertial periods) under the
weakest forcing to 4 rotation periods close to the transition to aperiodic flow. How-
ever, the modulation of oscillations by the lid rotation (via an unknown mechanism)
was strong enough to force an integer number of cycles, n, within each lid period.
Hence we first plot n as a function of the forcing strength Ro (figure 13a). For stable
flows the relation between the two is not clear, whereas for unstable cases there is
an approximate underlying trend n ∼ Ro−1. Alternatively, a plot of the oscillation
period T0 normalized by the rotation period TΩ reveals a clear trend T0 ∼ Ro−1 for
the stable regime. The periods in stable cases collapse even more closely to a simple
power-law curve when plotted against the Reynolds number Reγ (figure 13b). The
best fit, neglecting three scattered data points for stable cases close to the onset of

instability, is T0/TΩ ≈ 2.8 × 103Re
−4/3
γ for Reγ < 100. On this same plot the periods

measured for unstable runs (Reγ > 123) remain widely scattered and consistently lie
50% to 100% above the trend of the stable oscillations. A similar change in behaviour
between the two regimes is found if the periods are plotted against Ro (though in
Ro there is some overlap of stable and unstable cases at Ro ≈ 0.3–0.5). Some of
the scatter for the unstable oscillations in figure 13(b) can be attributed to different
Ekman numbers, and a plot of the periods against Ro/E shifts much of the data
for unstable periods on to a single line (while producing large scatter in the data for
stable cases). However, we are not able to find a functional form for the dependence
on E that collapses all of the unstable periods onto a single curve.

In contrast to the laboratory results, the computed flow converged to a steady state
in the stable regimes. Sustained periodic oscillations occurred only under conditions
very close to the onset of eddy shedding. As conditions approached those giving
sustained oscillations, the solution took an increasingly long time to converge to a
steady state, displaying slowly decaying periodic oscillations in total kinetic energy.
These decaying transients had a well-defined period of around 15–30 tank rotation
periods. The period merged smoothly with the oscillation period in the periodic
regime as the Reynolds number was increased past the onset of instability, suggesting
that the transition to periodic flow is a supercritical Hopf bifurcation. The computed
flow also showed fluctuations in total kinetic energy during its initial adjustment
following the commencement of forcing. These fluctuations were not periodic, but
had a dominant period of around 5–15 tank rotation periods, again with no detectable
dependence on Rossby or Ekman number. The nature of these initial fluctuations has
not been fully established, as they are significantly shorter than the shortest Rossby
basin mode period of 37.8 tank rotation periods.

The characteristic timescales of the initial fluctuations and later decaying oscillations
in the numerical model are similar to the period of stable oscillations observed in
the laboratory close to the onset of instability, but are significantly shorter than the
periods (of up to 50 days) observed at lower Rossby number. This disparity, and the
independence of these timescales of E and Ro suggest that the lid period exerts a
modulating effect on the amplitude of the stable oscillations seen in the laboratory,
forcing a much longer modulation period at small Ro than the natural adjustment
timescale would imply (though we recall that the observed oscillation period is only
a fraction of the lid modulation period). If this conclusion is correct, then oscillations
in the stable flow seen in the laboratory are a result of the system’s extreme sensitivity
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Figure 13. Period of oscillation or eddy shedding with anticyclonic forcing. (a) The number n
of oscillations per lid rotation period in experiments (n = 2π/(RoΩT0)) as function of Rossby
number; (b) the measured period expressed in rotation periods 2π/Ω and plotted against the
viscous boundary layer Reynolds number; (c) the period of total kinetic energy oscillations for
periodic flows obtained from the numerical model, plotted as a function of the Reynolds number
Reγ for several values of the Ekman number, with tan α = 0.1. Period doubled, quadrupled and
octupled points are not shown.
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Figure 14. Separation position of the western boundary current (in degrees west of the shallowest
point, ‘north’) as a function of the Reynolds number Reγ in laboratory experiments and numerical
results with anticyclonic forcing. Data are shown only for runs having Reγ > 100. The best fit to
the laboratory data is given by (25).

to very weak forcing. As noted previously, the mechanism responsible for the weak
oscillations in the stable regime appears to be unrelated to the shear instabilities
found above the critical forcing level, and is not expected to influence the locations
of the regime transitions. We therefore find good agreement between transitions in
the laboratory and numerical models.

On figure 13(c) we plot the period of the total kinetic energy − ∫∫ ψζ dx dy against
Reγ for numerical solutions in the periodic, unstable regime (the model does not
sustain continued oscillations in the stable regime). Points with doubled periods or
aperiodic behaviour (see figure 11a) are not shown. The normalized period decreases
approximately as Ro−1, with the periods for different E falling on nearly the same
line as a function of Ro (in contrast to the laboratory eddy-shedding periods which
depended on Ro/E).

We conclude that the normalized period of stable, small-amplitude oscillations
varied in a systematic fashion with Ro or Reγ, whereas the large-amplitude oscillations
and eddy shedding in unstable flows had normalized periods that varied approximately
as Ro−1 and decreased with increasing Ekman number until the forcing was sufficient
to lead to more complex eddy–eddy interactions. The latter results are contrary to
previous interpretations of laboratory data (Beardsley 1969), which suggested that the
period of eddy shedding was independent of Ro. We attribute the shorter normalized
periods at greater lid speeds to a strong influence of the advection of disturbances
along the boundary current. Also, the current, separated jet and eddies are wider
for larger E, thus favouring longer length scales, which, for a given Ro, give larger
normalized eddy-shedding periods.

6. Boundary current separation
The position of separation of the boundary jet in the homogeneous flow is of

particular interest for later comparison with two-layer density-stratified flows. In
the experiments separation was clearly defined only under conditions for which the
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current left the wall as a narrow jet. Its position, plotted as a function of Reynolds
number in figure 14, was estimated from the path of a dyed streamline injected as
close as possible to the wall without it entering the upflow in the viscous boundary
layer. After passing through the jet and the circulation in the northeast of the basin
some of the dye also entered a region of reversed flow in the northwest, north of the
separation point, and the resulting confluence of the velocities parallel to the wall
further confirmed the separation positions. Separation occurred at a mean azimuthal
angle θ∗ = 34.7◦ ± 3◦ west of the shallowest point in the tank. It was insensitive to
conditions, showing only a small shift toward the upstream direction (southward) for
larger forcing:

θ∗ = 28.9 + 0.032Reγ. (25)

Thus inertial overshoot of the current, which might be expected to give rise to a shift
in the opposite direction (downstream) under strong forcing, was either not present or
else was essentially independent of Rossby number throughout the unstable regime.

We used two criteria to objectively define the onset of position of boundary current
separation in the numerical results: a change in sign of the vorticity at the boundary
(indicating a region of reversed flow along the boundary) and a change in sign
of the radial derivative of the vorticity at the boundary (indicative of a region of
high vorticity extending into the interior). It was found that the latter criterion
was the weaker definition, as it always occurred at lower Rossby number than that
required to produce reversed flow. This results in a regime (between the dashed lines
in figure 11a) in which there was separation without recirculation (as discussed in
Becker & Page 1990). In cases when both criteria were satisfied, the change in sign of
the radial vorticity gradient occurred about 1◦–8◦ upstream of the change in sign of
vorticity when L/H0 = 7.84, with the difference tending to increase with increasing E.
The difference also increased with decreasing L/H0 (keeping H0, E and tan α fixed),
reaching around 22◦ for L/H0 = 1.96.

The position of separation in the quasi-geostrophic results is shown in figure 14.
Separation occurred between 17◦ and 39◦ west of north (using the onset of recircula-
tion to locate the separation point) or between 25◦ and 40◦ (using the change in sign of
the radial vorticity gradient at the boundary). Although separation in the laboratory
experiments was identified by recirculation, the numerical results agree best when the
radial vorticity gradient criterion was used. This indicates that separation is slightly
delayed in the numerical results, which may be related to the absence of an eastern
boundary current.

The quasi-geostrophic model allowed a more detailed investigation of the separation
process in terms of the higher-order pressure gradient (HOPG), that is, the part of the
pressure gradient force which is not geostrophically balanced (Cessi 1991; Haidvogel
et al. 1992). The part of the Coriolis term in the momentum equation (1) due to
the horizontally non-divergent velocity can be written as the gradient of a scalar,
and therefore can be entirely cancelled by the pressure gradient force. Any surplus
(‘higher order’) pressure gradient is balanced by the remaining terms in the momentum
equation. The higher-order pressure gradient is therefore given by

−∇p′ =
∂u

∂t
+ Ro(u · ∇)u+ 2k × ∇Hφ− E∇2u, (26)

where φ is the scalar potential of the horizontally divergent velocity (estimated by
solving (10), neglecting the contribution of the horizontally divergent velocity to
the orographic term). Since ∇p′ is irrotational, it is actually balanced only by the
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divergent part of the inertial term, since the other terms in the right-hand side of
(26) are non-divergent due to incompressibility (these terms serve only to cancel the
non-divergent part of the inertial term).

The horizontal part of (26), which we will call the HOPG, was calculated from
the quasi-geostrophic results for flow regimes ranging from quasi-linear to periodic
eddy shedding. It was found that the HOPG acted to accelerate the flow into the
western boundary current in the southwest. This favourable HOPG persisted across
the width of the southern part of the boundary current for all Rossby numbers
investigated. Further to the north the outer parts of the boundary current began to
decelerate under the influence of an adverse HOPG, while the flow against the wall
remained in a region of favourable HOPG. In the quasi-linear regime the HOPG was
favourable nearly everywhere against the boundary, although it could be very weakly
adverse at the extreme northern end of the boundary current under conditions close
to the onset of separation. The transition to strongly nonlinear flow coincided with
the penetration of a region of significantly adverse HOPG to the sidewall. When
the adverse HOPG at the sidewall was relatively weak and present along only a
short section of the sidewall, it was insufficient to create reversed flow along the
wall, and the flow separated without recirculation. The separation of the outer part
of the boundary layer was due to the much stronger adverse HOPG experienced
over a much longer streamline path. Stronger forcing increased both the size and
the strength of the region of adverse HOPG along the wall until it was sufficient
to reverse the flow along the wall and recirculation was observed. Thus the adverse
HOPG seems to offer a good explanation of western boundary current separation in
this model, consistent with the earlier conclusion of Cessi (1991).

The laboratory experiments displayed a small (±3◦) fluctuation in the separation
position associated with the eddy shedding frequency, recalling that eddy shedding
was coupled to fluctuations in the western boundary current via Rossby waves
that permeated the entire basin. Corresponding fluctuations in the current speed
at the west, measured 2 cm from the wall, can be seen in the thermistor speed
probe records in figure 12. Dye streams revealed the advection of these fluctuations
along the current from the west to the eddy-shedding region. Within the current
the disturbances were recognized as variations in the radial position of each dyed
stream. The fluctuations, coupled with large horizontal velocity gradients within the
boundary current, sometimes led to the development of sharp folds or kinks in the
passive tracer streams and these could be followed to the eddy shedding region.

7. Conclusions
Both the numerical model and the experiments have revealed transitions from

approximately quasi-linear flow to nonlinear stable flow and to an unstable periodic
regime. The experiments have revealed a further transition to aperiodic or chaotic
flow, which appears to be related to increased eddy–eddy and eddy–jet interactions.
This latter transition was not reliably reproduced by the quasi-geostrophic model.

Of the various Reynolds numbers available Reγ is the most useful for interpreting
the observed transitions. This Reynolds number, based on the width and velocity
scales of the E1/3-boundary layer, is also more physically plausible as a governing
parameter for the flow than was the previously suggested ‘Ekman-layer Reynolds
number’ based on the Ekman pumping velocity. The observation that the transition
to unstable eddy-shedding flow occurs at a fixed value of Reγ is evidence that the
eddy-shedding instability is a shear instability of the separated jet, as suggested
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by Becker & Page (1990). Significantly, the flow visualization showed clearly that
unsteadiness of the jet in the region where it makes a rapid adjustment to join the
slow interior flow propagates back through the interior into the upstream regions
of the boundary current. From there the fluctuations were seen to be advected with
the current and provide a positive feedback to the unsteady adjustment and eddy
shedding. The numerical results suggest that the onset of instability occurs through a
supercritical Hopf bifurcation.

The quasi-geostrophic model showed the crucial influence of basin aspect ratio on
flow behaviour. In particular, it was revealed that the relatively deep sliced cylinders
used in previous work (Beardsley 1969, 1973; Beardsley & Robbins 1975; Becker &
Page 1990) resulted in significant stabilization of the flow, since the western boundary
current occupied a large proportion of the basin width and was therefore strongly
constrained by the lateral boundaries.

The measurements of velocities and transports in the laboratory and numerical
flows (as functions of the Rossby and Ekman numbers and the bottom slope) were
generally consistent with each other, and also in good agreement with linear theory
when Ro < E1/2. The quasi-geostrophic model shows that western boundary current
separation in the sliced cylinder is due an adverse higher-order pressure gradient. The
distribution of this pressure gradient explains the separation without recirculation
observed under some conditions.

The authors would like to thank an anonymous reviewer for helpful suggestions
regarding the formulation used in the numerical model.
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